Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate.

نویسندگان

  • Gang Huang
  • Yasuhiro Takeuchi
  • Wanbiao Ma
  • Daijun Wei
چکیده

In this paper, based on SIR and SEIR epidemic models with a general nonlinear incidence rate, we incorporate time delays into the ordinary differential equation models. In particular, we consider two delay differential equation models in which delays are caused (i) by the latency of the infection in a vector, and (ii) by the latent period in an infected host. By constructing suitable Lyapunov functionals and using the Lyapunov-LaSalle invariance principle, we prove the global stability of the endemic equilibrium and the disease-free equilibrium for time delays of any length in each model. Our results show that the global properties of equilibria also only depend on the basic reproductive number and that the latent period in a vector does not affect the stability, but the latent period in an infected host plays a positive role to control disease development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A lyapunov function and global properties for sir and seir epidemiological models with nonlinear incidence.

Explicit Lyapunov functions for SIR and SEIR compartmental epidemic models with nonlinear incidence of the form betaI(p)S(q) for the case p </= 1 are constructed. Global stability of the models is thereby established.

متن کامل

Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis ‎Incidence Rate and a Constant Infectious Period

In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...

متن کامل

Global analysis on delay epidemiological dynamic models with nonlinear incidence.

In this paper, we derive and study the classical SIR, SIS, SEIR and SEI models of epidemiological dynamics with time delays and a general incidence rate. By constructing Lyapunov functionals, the global asymptotic stability of the disease-free equilibrium and the endemic equilibrium is shown. This analysis extends and develops further our previous results and can be applied to the other biologi...

متن کامل

Disease Control of Delay SEIR Model with Nonlinear Incidence Rate and Vertical Transmission

The aim of this paper is to develop two delayed SEIR epidemic models with nonlinear incidence rate, continuous treatment, and impulsive vaccination for a class of epidemic with latent period and vertical transition. For continuous treatment, we obtain a basic reproductive number ℜ0 and prove the global stability by using the Lyapunov functional method. We obtain two thresholds ℜ* and ℜ∗ for imp...

متن کامل

A comparison of delayed SIR and SEIR epidemic models

Abstract. In epidemiological research literatures, a latent or incubation period can be medelled by incorporating it as a delay effect (delayed SIR models), or by introducing an exposed class (SEIR models). In this paper we propose a comparison of a delayed SIR model and its corresponding SEIR model in terms of local stability. Also some numerical simulations are given to illustrate the theoret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 72 5  شماره 

صفحات  -

تاریخ انتشار 2010